metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.6D6, C12.15D4, D12⋊6C22, C12.12C23, Dic6⋊5C22, D4⋊S3⋊5C2, (C2×D4)⋊2S3, (C6×D4)⋊2C2, C3⋊C8⋊3C22, C4○D12⋊3C2, C3⋊4(C8⋊C22), D4.S3⋊5C2, (C2×C4).17D6, (C2×C6).39D4, C6.45(C2×D4), C4.Dic3⋊6C2, C4.16(C3⋊D4), C4.12(C22×S3), (C3×D4).6C22, (C2×C12).30C22, C22.10(C3⋊D4), C2.9(C2×C3⋊D4), SmallGroup(96,139)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12⋊6C22
G = < a,b,c,d | a12=b2=c2=d2=1, bab=a-1, ac=ca, dad=a7, cbc=a6b, dbd=a3b, cd=dc >
Subgroups: 162 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×D4, C22×C6, C8⋊C22, C4.Dic3, D4⋊S3, D4.S3, C4○D12, C6×D4, D12⋊6C22
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C8⋊C22, C2×C3⋊D4, D12⋊6C22
Character table of D12⋊6C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 12A | 12B | |
size | 1 | 1 | 2 | 4 | 4 | 12 | 2 | 2 | 2 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 0 | -1 | -2 | 2 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | -2 | 2 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | -1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -1 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -1 | -1 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 1 | -1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 1 | -1 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 24)(11 23)(12 22)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(2 8)(4 10)(6 12)(13 22)(14 17)(15 24)(16 19)(18 21)(20 23)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,8)(4,10)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,8)(4,10)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,24),(11,23),(12,22)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(2,8),(4,10),(6,12),(13,22),(14,17),(15,24),(16,19),(18,21),(20,23)]])
G:=TransitiveGroup(24,118);
D12⋊6C22 is a maximal subgroup of
D12.2D4 D12.3D4 D12.14D4 C42⋊8D6 C24.23D4 C24.44D4 D12⋊18D4 D12.38D4 D8⋊13D6 SD16⋊13D6 S3×C8⋊C22 D8⋊4D6 C12.C24 D12.32C23 D12.33C23 D36⋊6C22 D12⋊20D6 D12.28D6 D12⋊9D6 D12.7D6 C62.131D4 C60.36D4 D60⋊30C22 D12⋊10D10 D20.9D6 D4.D30
D12⋊6C22 is a maximal quotient of
C4⋊C4.225D6 C4○D12⋊C4 C4⋊C4.228D6 C4⋊C4.230D6 D4.3Dic6 C42.48D6 D4.1D12 C42.51D6 C6.Q16⋊C2 D12⋊17D4 C4⋊D4⋊S3 C3⋊C8⋊5D4 C42.72D6 C12⋊2D8 C42.74D6 Dic6⋊9D4 C42.76D6 D12⋊5Q8 C42.82D6 Dic6⋊5Q8 (C6×D4)⋊6C4 (C2×C6)⋊8D8 (C3×D4).31D4 D36⋊6C22 D12⋊20D6 D12.28D6 D12⋊9D6 D12.7D6 C62.131D4 C60.36D4 D60⋊30C22 D12⋊10D10 D20.9D6 D4.D30
Matrix representation of D12⋊6C22 ►in GL4(𝔽7) generated by
6 | 4 | 6 | 3 |
2 | 0 | 2 | 6 |
1 | 1 | 1 | 5 |
1 | 6 | 3 | 0 |
6 | 0 | 0 | 0 |
0 | 5 | 3 | 2 |
4 | 3 | 5 | 5 |
1 | 1 | 6 | 5 |
0 | 1 | 4 | 5 |
1 | 0 | 3 | 5 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 6 |
0 | 6 | 6 | 0 |
6 | 0 | 6 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(7))| [6,2,1,1,4,0,1,6,6,2,1,3,3,6,5,0],[6,0,4,1,0,5,3,1,0,3,5,6,0,2,5,5],[0,1,0,0,1,0,0,0,4,3,1,0,5,5,0,6],[0,6,0,0,6,0,0,0,6,6,1,0,0,0,0,6] >;
D12⋊6C22 in GAP, Magma, Sage, TeX
D_{12}\rtimes_6C_2^2
% in TeX
G:=Group("D12:6C2^2");
// GroupNames label
G:=SmallGroup(96,139);
// by ID
G=gap.SmallGroup(96,139);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,579,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^2=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^7,c*b*c=a^6*b,d*b*d=a^3*b,c*d=d*c>;
// generators/relations
Export